11/03 - Kempf's theorem Note Title time: Ended by saying if X oup Spec(T(Ox))is projective and G acts on X linearizedly, i.e. $X oup D^{M} \times A^{M}$ then call $C oup \mathcal{L} = \mathcal{O}_{X}(I)$ A) YFET(X, 2n)G, XF= \(\frac{1}{2}\text{xeX}\\ \frac{1}{2}\text{xeX}\\ \frac{1}\text{xeX}\\ \frac{1}{2}\text{xeX}\\ \frac{1}\text{xeX}\\ \frac{1}{2}\text{xeX}\\ \frac{1}{2}\t XSS(Z)= UXI/G

Proj DP(ZNG

Q is a GMS

Spec P(OX)G

Spec P(OX)G B) the HM criterion holds as stated Consequences of HM criterion: (will come back to this) 2) $X^{55}(Z)$ only depends on $C_1(Z) \in H^2_C(X;Q)$ 1) can define $X^{55}(L)$ for $L \in Pic(X/G) \otimes Q$ 3) if you perturb & ~> l+ El' For E small, then X^{SS}(l+El') c X^{TS}(l) 4) IF Y is Finite, then $Y^{55}(l) = \pi^{-1}(X^{55}(l))$

			_		
Point is	5 T- 5	emistalde	.55	St(p) c:	t _P
Contain	s origin				