Last time: Ended by saying if $X \longrightarrow \operatorname{Spec}\left(\Gamma\left(\theta_{x}\right)\right)$ is projective and G acts on X linearized, i.e, $X \hookrightarrow \mathbb{P}^{M} \times \mathbb{A}^{N}$, then call $\mathcal{L}=\theta_{x}(1)$
A) $\forall f \in \Gamma\left(X, \mathcal{L}^{n}\right)^{G}, \quad X_{f}=\{x \in X \mid f(x) \neq 0\}$ is shill

B) the HM criterion holds as stated

Consequences of HM criterion:
(will came back to this)
2) $X^{S s}(\mathcal{Z})$ only depends on $c_{1}(\mathcal{Z}) \in H_{G}^{2}(X ; \mathbb{Q})$

1) can define $X^{s s}(l)$ for $l \in \operatorname{Pic}(X / G) \otimes \mathbb{Q}$
2) if you perturb $l \leadsto l+\epsilon l^{\prime}$ for ϵ small, then $X^{s 5}\left(l+\epsilon l^{\prime}\right) \subset X^{55}(l)$
3) If $y \underset{\pi}{\rightarrow} X$ is finite, then

$$
y^{s s}(l)=\pi^{-1}\left(x^{s s}(l)\right)
$$

$E x: Y=(\mathbb{P})^{n} \longrightarrow \mathbb{R}^{n} D S L_{2}, \mathcal{L}=\theta_{\mathbb{R}}\left(r_{1}\right) \mathbb{\otimes} \cdot \otimes \theta_{\mathbb{P}}^{\left(r_{n}\right)}$
$\lambda: \mathrm{Gm}_{\mathrm{m}} \longrightarrow S L_{2}$ is a choice of basis up to scaling $\mathbb{P}=\{[x: y]\}$

$$
t \cdot\left[x^{\prime}: y\right]=\left[t^{-1} x: t y\right]
$$

$Y=n$-tuples of linear forms

$$
Y^{s s}(z)=\left\{\left(l_{1},, l_{n}\right) \mid \forall \ell, \sum_{e_{i}=\ell} r_{i} \leqslant \sum_{e_{i}+\ell} r_{i}\right\}
$$

The symmetric linearization desends to \mathbb{P}^{n} \leadsto binary form $f(x, y)$ is semistable iff has no root of multiplicity $>\frac{n}{2}$
${ }_{k}$ Can consider the dependence of $Y^{5 S}$ on $\Gamma_{1,}, r_{n}$
\rightarrow VGIT, can define stability for classes in Pic $\otimes \mathbb{R}$
$E x: S_{3} २ \mathbb{P}\left(\Gamma\left(\mathbb{P}^{2}, \theta_{\mathbb{P}}(2)\right)\right)=\mathbb{P}\left(S_{y m}{ }^{3} \mathbb{C}^{3}\right)$
Char writ. TcSL_{3}, standard max torus

IFS $\leadsto s$ codirection limit m $\omega t_{\lambda}\left(\theta(1)_{y}\right)$ $=-\left\langle\lambda, x_{\text {min }}\right\rangle$

Point is T-semistadle iff $S t(p) \subset t_{\mathbb{P}}$ contains origin

